Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis

Gastroenterology. 2020 Nov;159(5):1882-1897.e5. doi: 10.1053/j.gastro.2020.07.046. Epub 2020 Aug 5.

Abstract

Background & aims: Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice.

Methods: We performed studies with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A. Pancreatic and other tissues were collected and analyzed by histology and immunohistochemistry. Cancer cells were cultured from PDACs from mice and analyzed in cell migration and invasion assays and by immunoblots, real-time polymerase chain reaction, and liquid chromatography-mass spectrometry. We performed studies with the human pancreatic cancer cell lines PATU-8988T, BxPC-3, PANC-1, and MiaPACA-2, which have no or low metastatic activity, and PATU-8988S, AsPC-1, SUIT-2 and Capan-1, which have high metastatic activity. Expression of genes was knocked down in primary cancer cells and pancreatic cancer cell lines by using small hairpin RNAs; cells were injected intravenously into immune-competent and NOD/SCID mice, and lung metastases were quantified. We compared levels of messenger RNAs in pancreatic tumors and normal pancreas in The Cancer Genome Atlas.

Results: EKPC mice with pancreas-specific deletion of HIF1A developed more advanced pancreatic neoplasias and PDACs with more invasion and metastasis, and had significantly shorter survival times, than EKPC mice. Pancreatic cancer cells from these tumors had higher invasive and metastatic activity in culture than cells from tumors of EKPC mice. HIF1A-knockout pancreatic cancer cells had increased expression of protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B). There was an inverse correlation between levels of HIF1A and PPP1R1B in human PDAC tumors; higher expression of PPP1R1B correlated with shorter survival times of patients. Metastatic human pancreatic cancer cell lines had increased levels of PPP1R1B and lower levels of HIF1A compared with nonmetastatic cancer cell lines; knockdown of PPP1R1B significantly reduced the ability of pancreatic cancer cells to form lung metastases in mice. PPP1R1B promoted degradation of p53 by stabilizing phosphorylation of MDM2 at Ser166.

Conclusions: HIF1A can act a tumor suppressor by preventing the expression of PPP1R1B and subsequent degradation of the p53 protein in pancreatic cancer cells. Loss of HIF1A from pancreatic cancer cells increases their invasive and metastatic activity.

Keywords: Carcinogenesis; Cell Motility; Signal Transduction; Tumor Progression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Carcinoma, Pancreatic Ductal / genetics
  • Carcinoma, Pancreatic Ductal / metabolism*
  • Carcinoma, Pancreatic Ductal / secondary
  • Cell Line, Tumor
  • Cell Movement*
  • Disease Models, Animal
  • Dopamine and cAMP-Regulated Phosphoprotein 32 / genetics
  • Dopamine and cAMP-Regulated Phosphoprotein 32 / metabolism*
  • Epithelial-Mesenchymal Transition
  • Female
  • Gene Expression Regulation, Neoplastic
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / deficiency
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / secondary
  • Male
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Mutation
  • Neoplasm Invasiveness
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / metabolism*
  • Pancreatic Neoplasms / pathology
  • Proteolysis
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Signal Transduction
  • Trans-Activators / genetics
  • Trans-Activators / metabolism
  • Tumor Hypoxia
  • Tumor Microenvironment
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*
  • Up-Regulation

Substances

  • Dopamine and cAMP-Regulated Phosphoprotein 32
  • HIF1A protein, human
  • Hif1a protein, mouse
  • Homeodomain Proteins
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • PPP1R1B protein, human
  • Ppp1r1b protein, mouse
  • TP53 protein, human
  • Trans-Activators
  • Trp53 protein, mouse
  • Tumor Suppressor Protein p53
  • pancreatic and duodenal homeobox 1 protein
  • Hras protein, mouse
  • Proto-Oncogene Proteins p21(ras)