Gene expression in Escherichia coli biofilms

Appl Microbiol Biotechnol. 2004 May;64(4):515-24. doi: 10.1007/s00253-003-1517-y. Epub 2004 Jan 16.

Abstract

DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p< or =0.05) compared to suspension cells, including several genes for the stress response ( hslS, hslT, hha, and soxS), type I fimbriae ( fimG), metabolism ( metK), and 11 genes of unknown function ( ybaJ, ychM, yefM, ygfA, b1060, b1112, b2377, b3022, b1373, b1601, and b0836). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in E. coli JM109 biofilm formation.

Publication types

  • Comparative Study

MeSH terms

  • Biofilms / growth & development*
  • Escherichia coli / genetics*
  • Escherichia coli / growth & development
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / physiology
  • Fimbriae, Bacterial / genetics
  • Fimbriae, Bacterial / physiology
  • Gene Expression Profiling*
  • Gene Expression Regulation, Bacterial*
  • Genes, Bacterial
  • Heat-Shock Proteins / genetics
  • Heat-Shock Proteins / physiology
  • Oligonucleotide Array Sequence Analysis

Substances

  • Escherichia coli Proteins
  • Heat-Shock Proteins