Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution

J Biol Chem. 2005 Jun 24;280(25):24104-12. doi: 10.1074/jbc.M502518200. Epub 2005 Apr 26.

Abstract

NAD kinase phosphorylates NAD+ to form NADP+ and is strictly specific to NAD+, whereas NADH kinase phosphorylates both NAD+ and NADH, thereby showing relaxed substrate specificity. Based on their primary and tertiary structures, the difference in the substrate specificities between NAD and NADH kinases was proposed to be caused by one aligned residue: Gly or polar amino acid (Gln or Thr) in five NADH kinases and a charged amino acid (Arg) in two NAD kinases. The substitution of Arg with Gly in the two NAD kinases relaxed the substrate specificity (i.e. converted the NAD kinases to NADH kinases). The substitution of Arg in one NAD kinase with polar amino acids also relaxed the substrate specificity, whereas substitution with charged and hydrophobic amino acids did not show a similar result. In contrast, the substitution of Gly with Arg in one NADH kinase failed to convert it to NAD kinase. These results suggest that a charged or hydrophobic amino acid residue in the position of interest is crucial for strict specificity of NAD kinases to NAD+, whereas Gly or polar amino acid residue is not the sole determinant for the relaxed substrate specificity of NADH kinases. The significance of the conservation of the residue at the position in 207 NAD kinase homologues is also discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Amino Acids / metabolism*
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Phosphorylation
  • Phosphotransferases (Alcohol Group Acceptor) / chemistry
  • Phosphotransferases (Alcohol Group Acceptor) / genetics
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*
  • Protein Conformation
  • Sequence Homology, Amino Acid

Substances

  • Amino Acids
  • Phosphotransferases (Alcohol Group Acceptor)
  • NAD kinase