Cloning and characterization of a novel fold-type I branched-chain amino acid aminotransferase from the hyperthermophilic archaeon Thermococcus sp. CKU-1

Extremophiles. 2014 May;18(3):589-602. doi: 10.1007/s00792-014-0642-0. Epub 2014 Apr 1.

Abstract

We successfully cloned a novel branched-chain amino acid aminotransferase (Ts-BcAT; EC 2.6.1.42) gene from the Thermococcus sp. CKU-1 genome and expressed it in the soluble fraction of Escherichia coli Rosetta (DE3) cells. Ts-BcAT is a homodimer with an apparent molecular mass of approximately 92 kDa. The primary structure of Ts-BcAT showed high homology with the fold-type I, subgroup I aminotransferases, but showed little homology with BcATs known to date, i.e., those of Escherichia coli and Salmonella typhimurium, which belong to the fold-type IV, subgroup III aminotransferases. The maximum enzyme activity of Ts-BcAT was detected at 95 °C, and Ts-BcAT did not lose any enzyme activity, even after incubation at 90 °C for 5 h. Ts-BcAT was active in the pH range from 4.0 to 11.0, the optimum pH was 9.5, and the enzyme was stable between pH 6 and 7. The exceptionally low pK a of the nitrogen atom in the Lys258 ε-amino group in the internal aldimine bond of Ts-BcAT was determined to be 5.52 ± 0.05. Ts-BcAT used 21 natural and unnatural amino acids as a substrate in the overall transamination reaction. L-Leucine and other aliphatic amino acids are efficient substrates, while polar amino acids except glutamate were weak substrates. Phylogenetic analysis revealed that Ts-BcAT is a novel fold-type I, subgroup I branched-chain aminotransferase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Archaeal Proteins / chemistry
  • Archaeal Proteins / genetics
  • Archaeal Proteins / metabolism*
  • Aspartate Aminotransferases / chemistry
  • Aspartate Aminotransferases / genetics
  • Aspartate Aminotransferases / metabolism*
  • Cloning, Molecular
  • Molecular Sequence Data
  • Thermococcus / enzymology*
  • Thermococcus / genetics

Substances

  • Archaeal Proteins
  • Aspartate Aminotransferases