IpdE1-IpdE2 Is a Heterotetrameric Acyl Coenzyme A Dehydrogenase That Is Widely Distributed in Steroid-Degrading Bacteria

Biochemistry. 2020 Mar 17;59(10):1113-1123. doi: 10.1021/acs.biochem.0c00005. Epub 2020 Mar 4.

Abstract

Steroid-degrading bacteria, including Mycobacterium tuberculosis (Mtb), utilize an architecturally distinct subfamily of acyl coenzyme A dehydrogenases (ACADs) for steroid catabolism. These ACADs are α2β2 heterotetramers that are usually encoded by adjacent fadE-like genes. In mycobacteria, ipdE1 and ipdE2 (formerly fadE30 and fadE33) occur in divergently transcribed operons associated with the catabolism of 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP), a steroid metabolite. In Mycobacterium smegmatis, ΔipdE1 and ΔipdE2 mutants had similar phenotypes, showing impaired growth on cholesterol and accumulating 5-OH HIP in the culture supernatant. Bioinformatic analyses revealed that IpdE1 and IpdE2 share many of the features of the α- and β-subunits, respectively, of heterotetrameric ACADs that are encoded by adjacent genes in many steroid-degrading proteobacteria. When coproduced in a rhodococcal strain, IpdE1 and IpdE2 of Mtb formed a complex that catalyzed the dehydrogenation of 5OH-HIP coenzyme A (5OH-HIP-CoA) to 5OH-3aα-H-4α(3'-prop-1-enoate)-7aβ-methylhexa-hydro-1,5-indanedione coenzyme A ((E)-5OH-HIPE-CoA). This corresponds to the initial step in the pathway that leads to degradation of steroid C and D rings via β-oxidation. Small-angle X-ray scattering revealed that the IpdE1-IpdE2 complex was an α2β2 heterotetramer typical of other ACADs involved in steroid catabolism. These results provide insight into an important class of steroid catabolic enzymes and a potential virulence determinant in Mtb.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acyl Coenzyme A / metabolism
  • Acyl-CoA Dehydrogenase / metabolism*
  • Acyl-CoA Dehydrogenase / physiology*
  • Bacterial Proteins / metabolism
  • Cholesterol / metabolism
  • Coenzyme A / metabolism
  • Coenzyme A Ligases / metabolism
  • Mycobacterium tuberculosis / enzymology
  • Mycobacterium tuberculosis / metabolism
  • Steroids / metabolism

Substances

  • Acyl Coenzyme A
  • Bacterial Proteins
  • Steroids
  • Cholesterol
  • Acyl-CoA Dehydrogenase
  • Coenzyme A Ligases
  • Coenzyme A