Objectives: We compared the ability of inhaled nitric oxide (NO), oxygen (O2) and nitric oxide in oxygen (NO+O2) to identify reactive pulmonary vasculature in pulmonary hypertensive patients during acute vasodilator testing at cardiac catheterization.
Background: In patients with pulmonary hypertension, decisions regarding suitability for corrective surgery, transplantation and assessment of long-term prognosis are based on results obtained during acute pulmonary vasodilator testing.
Methods: In group 1, 46 patients had hemodynamic measurements in room air (RA), 100% O2, return to RA and NO (80 parts per million [ppm] in RA). In group 2, 25 additional patients were studied in RA, 100% O2 and 80 ppm NO in oxygen (NO+O2).
Results: In group 1, O2 decreased pulmonary vascular resistance (PVR) (mean+/-SEM) from 17.2+/-2.1 U.m2 to 11.1+/-1.5 U.m2 (p < 0.05). Nitric oxide caused a comparable decrease from 17.8+/-2.2 U.m2 to 11.7+/-1.7 U.m2 (p < 0.05). In group 2, PVR decreased from 20.1+/-2.6 U.m2 to 14.3+/-1.9 U.m2 in O2 (p < 0.05) and further to 10.5+/-1.7 U.m2 in NO+O2 (p < 0.05). A response of 20% or more reduction in PVR was seen in 22/25 patients with NO+O2 compared with 16/25 in O2 alone (p = 0.01).
Conclusions: Inhaled NO and O2 produced a similar degree of selective pulmonary vasodilation. Our data suggest that combination testing with NO + O2 provides additional pulmonary vasodilation in patients with a reactive pulmonary vascular bed in a selective, safe and expeditious fashion during cardiac catheterization. The combination of NO+O2 identifies patients with significant pulmonary vasoreactivity who might not be recognized if O2 or NO were used separately.