The p53 tumor suppressor gene is mutated in over 50% of human cancers, resulting in inactivation of the wild-type (wt) p53 protein. The most notable biochemical feature of p53 is its ability to act as a sequence-specific transcriptional activator. Through use of the suppression subtractive hybridization differential screening technique, we identified c-fos as a target for transcriptional stimulation by p53 in cells undergoing p53-mediated apoptosis. Overexpression of wt p53 induces c-fos mRNA and protein. Moreover, in vivo induction of c-fos in the thymus following whole-body exposure to ionizing radiation is p53 dependent. p53 responsiveness does not reside in the basal c-fos promoter. Rather, a distinct region within the c-fos gene first intron binds specifically to p53 and confers upon the c-fos promoter the ability to become transcriptionally activated by wt p53. Identification of c-fos as a specific target for transcriptional activation by p53 establishes a direct link between these two pivotal regulatory proteins and raises the possibility that c-fos contributes to some of the biological effects of p53.