Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices

J Neurophysiol. 1999 Mar;81(3):1404-11. doi: 10.1152/jn.1999.81.3.1404.

Abstract

To investigate the physiological consequences of the increase in spine density induced by estradiol in pyramidal neurons of the hippocampus, we performed simultaneous whole cell recordings and Ca2+ imaging in CA1 neuron spines and dendrites in hippocampal slices. Four- to eight-days in vitro slice cultures were exposed to 17beta-estradiol (EST) for an additional 4- to 8-day period, and spine density was assessed by confocal microscopy of DiI-labeled CA1 pyramidal neurons. Spine density was doubled in both apical and basal dendrites of the CA1 region in EST-treated slices; consistently, a reduction in cell input resistance was observed in EST-treated CA1 neurons. Double immunofluorescence staining of presynaptic (synaptophysin) and postsynaptic (alpha-subunit of CaMKII) proteins showed an increase in synaptic density after EST treatment. The slopes of the input/output curves of both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) postsynaptic currents were steeper in EST-treated CA1 neurons, consistent with the observed increase in synapse density. To characterize NMDA-dependent synaptic currents and dendritic Ca2+ transients during Schaffer collaterals stimulation, neurons were maintained at +40 mV in the presence of nimodipine, picrotoxin, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). No differences in resting spine or dendritic Ca2+ levels were observed between control and EST-treated CA1 neurons. Intracellular Ca2+ transients during afferent stimulation exhibited a faster slope and reached higher levels in spines than in adjacent dendrites. Peak Ca2+ levels were larger in both spines and dendrites of EST-treated CA1 neurons. Ca2+ gradients between spine heads and dendrites during afferent stimulation were also larger in EST-treated neurons. Both spine and dendritic Ca2+ transients during afferent stimulation were reversibly blocked by D, L-2-amino-5-phosphonovaleric acid (D,L-APV). The increase in spine density and the enhanced NMDA-dependent Ca2+ signals in spines and dendrites induced by EST may underlie a threshold reduction for induction of NMDA-dependent synaptic plasticity in the hippocampus.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology
  • Animals
  • Calcium / metabolism*
  • Dendrites / drug effects*
  • Dendrites / metabolism
  • Estradiol / pharmacology*
  • Excitatory Amino Acid Agonists / pharmacology
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • In Vitro Techniques
  • N-Methylaspartate / physiology*
  • Pyramidal Cells / drug effects*
  • Pyramidal Cells / ultrastructure
  • Rats
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid / pharmacology

Substances

  • Excitatory Amino Acid Agonists
  • Excitatory Amino Acid Antagonists
  • Estradiol
  • N-Methylaspartate
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
  • Calcium