A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation

Mol Microbiol. 1999 Feb;31(4):1149-59. doi: 10.1046/j.1365-2958.1999.01255.x.


At the onset of sporulation in Bacillus subtilis, two potential division sites are assembled at each pole, one of which will be used to synthesize the asymmetrically positioned sporulation septum. Using the vital stain FM 4-64 to label the plasma membrane of living cells, we examined the fate of these potential division sites in wild-type cells and found that, immediately after the formation of the sporulation septum, a partial septum was frequently synthesized within the mother cell at the second potential division site. Using time-lapse deconvolution microscopy, we were able to watch these partial septa first appear and then disappear during sporulation. Septal dissolution was dependent on sigma E activity and was partially inhibited in mutants lacking the sigma E-controlled proteins SpoIID, SpoIIM and SpoIIP, which may play a role in mediating the degradation of septal peptidoglycan. Our results support a model in which sigma E inhibits division at the second potential division site by two distinct mechanisms: inhibition of septal biogenesis and the degradation of partial septa formed before sigma E activation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacillus subtilis / genetics
  • Bacillus subtilis / physiology*
  • Bacillus subtilis / ultrastructure
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Cell Cycle
  • Cell Membrane / metabolism*
  • Fluorescent Dyes / metabolism*
  • Gene Expression Regulation, Bacterial*
  • Image Processing, Computer-Assisted
  • Microscopy, Electron
  • Photomicrography
  • Pyridinium Compounds / metabolism*
  • Quaternary Ammonium Compounds / metabolism*
  • Sigma Factor / metabolism
  • Spores, Bacterial / ultrastructure
  • Time Factors
  • Transcription Factors / metabolism


  • Bacterial Proteins
  • FM 4-64
  • Fluorescent Dyes
  • Pyridinium Compounds
  • Quaternary Ammonium Compounds
  • Sigma Factor
  • Transcription Factors
  • spoIIR protein, Bacillus subtilis
  • spore-specific proteins, Bacillus
  • sporulation-specific sigma factors