A novel ontogenetic pathway in hybrid embryos between species with different modes of development

Development. 1999 May;126(9):1937-45. doi: 10.1242/dev.126.9.1937.

Abstract

To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids exhibited restoration of feeding larval structures and paternal gene expression that have been lost in the evolution of the direct-developing maternal species. However, the developmental outcome of the hybrids was not a simple reversion to the paternal pluteus larval form. An unexpected result was that the ontogeny of the hybrids was distinct from either parental species. Early hybrid larvae exhibited a novel morphology similar to that of the dipleurula-type larva typical of other classes of echinoderms and considered to represent the ancestral echinoderm larval form. In the hybrid developmental program, therefore, both recent and ancient ancestral features were restored. That is, the hybrids exhibited features of the pluteus larval form that is present in both the paternal species and in the immediate common ancestor of the two species, but they also exhibited general developmental features of very distantly related echinoderms. Thus in the hybrids, the interaction of two genomes that normally encode two disparate developmental modes produces a novel but harmonious ontongeny.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Embryo, Nonmammalian / physiology
  • Female
  • Gene Expression Regulation, Developmental*
  • Hybridization, Genetic
  • Larva / physiology
  • Larva / ultrastructure
  • Male
  • Microscopy, Electron, Scanning
  • Morphogenesis*
  • Sea Urchins / embryology*
  • Sea Urchins / growth & development*
  • Species Specificity