Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 77 (1), 47-57

Regulation of Pro-Apoptotic Leucocyte Granule Serine Proteinases by Intracellular Serpins

Affiliations
Review

Regulation of Pro-Apoptotic Leucocyte Granule Serine Proteinases by Intracellular Serpins

P I Bird. Immunol Cell Biol.

Abstract

Caspase activation and apoptosis can be initiated by the introduction of serine proteinases into the cytoplasm of a cell. Cytotoxic lymphocytes have evolved at least one serine proteinase with specific pro-apoptotic activity (granzyme B), as well as the mechanisms to deliver it into a target cell, and recent evidence suggests that other leucocyte granule proteinases may also have the capacity to kill if released into the interior of cells. For example, the monocyte/granulocyte proteinase cathepsin G can activate caspases in vitro, and will induce apoptosis if its entry into cells is mediated by a bacterial pore-forming protein. The potent pro-apoptotic activity of granzyme B and cathepsin G suggests that cells producing these (or other) proteinases would be at risk from self-induced death if the systems involved in packaging, degranulation or targeting fail and allow proteinases to enter the host cell cytoplasm. The purpose of the present review is to describe recent work on a group of intracellular serine proteinase inhibitors (serpins) which may function in leucocytes to prevent autolysis induced by the granule serine proteinases.

Similar articles

See all similar articles

Cited by 19 articles

See all "Cited by" articles

Publication types

MeSH terms

LinkOut - more resources

Feedback