Expression of folate receptor alpha in the mammalian retinol pigmented epithelium and retina

Invest Ophthalmol Vis Sci. 1999 Apr;40(5):840-8.

Abstract

Purpose: Folic acid is essential for DNA, RNA, and protein synthesis, and deficiencies in folate can lead to nutritional amblyopia and optic neuropathy. The transport of folate from the choroidal blood supply to the retina is only now beginning to be understood. The reduced-folate transporter was reported recently to be present in cultured human retinal pigment epithelial (RPE) cells and is thought to be localized to the apical region of these cells. The authors hypothesize that the RPE plays a role in the vectorial transport of folate from the choroidal blood to the neural retina and uses not only the reduced-folate transporter but also the folate receptor alpha in mediating this transport. The purpose of the present study was to determine whether the folate receptor alpha was present in the RPE and, if so, whether it was distributed along the basolateral membrane of the RPE, supporting a role for the protein in the initial steps of folate transport into the RPE.

Methods: The expression of the folate receptor alpha in mouse RPE was analyzed by reverse transcription-polymerase chain reaction (RT-PCR), functional assays, in situ hybridization, immunohistochemistry, and laser scanning confocal microscopy.

Results: RT-PCR analysis, cloning of the RT-PCR product, and subsequent sequencing established that folate receptor alpha mRNA transcripts are expressed in the mouse RPE/choroid and are expressed also in the neural retina. A heterologous functional expression assay using MTX(R)-ZR-75-1 cells showed that the folate receptor alpha cDNA obtained by RT-PCR from the RPE/choroid complex and the neural retina was functional as assessed by the binding of folic acid and by the uptake of N5-methyltetrahydrofolate. In situ hybridization localized the folate receptor alpha mRNA to the mouse RPE cells and to cells of the neural retina. The folate receptor alpha was detected immunohistochemically in the mouse and rat RPE and in several layers of the neural retina. Laser scanning confocal microscopy revealed the distribution of the folate receptor alpha along the basolateral region of the RPE and not the apical region.

Conclusions: The present work represents the first analysis of the folate receptor alpha expression in intact mammalian retina. The receptor is present and functional in mouse RPE. It is distributed specifically along the basolateral surface of the RPE and is proposed to work in a coordinated manner with the reduced-folate transporter in the vectorial transport of folate from the choroidal blood to the neural retina.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blotting, Northern
  • Carrier Proteins / biosynthesis*
  • Carrier Proteins / genetics
  • DNA Primers / chemistry
  • Folate Receptors, GPI-Anchored
  • Immunoenzyme Techniques
  • In Situ Hybridization
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred ICR
  • Microscopy, Confocal
  • Pigment Epithelium of Eye / metabolism*
  • RNA, Messenger / metabolism
  • Rats
  • Receptors, Cell Surface / biosynthesis*
  • Receptors, Cell Surface / genetics
  • Retina / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • Carrier Proteins
  • DNA Primers
  • Folate Receptors, GPI-Anchored
  • RNA, Messenger
  • Receptors, Cell Surface