Fluorescence microscopy of calcium and synaptic vesicle dynamics during synapse formation in tissue culture

Histochem J. 1998 Mar;30(3):189-96. doi: 10.1023/a:1003247403685.

Abstract

The signal transduction process involved in the development of the nerve terminal is an intriguing question in developmental neurobiology. During the formation of the neuromuscular junction, presynaptic development is induced by growth cone's contact with the target muscle cell. Fluorescence microscopy with specific markers has made it possible to follow signalling events during this process. By using fluorescent calcium indicators, such as fura-2 and fluo-3, we found that a rise in intracellular calcium is elicited in the growth cone upon its contact with a target, and this calcium signal can also be elicited by local application of basic fibroblast growth factor. To monitor the clustering of synaptic vesicles in response to target contact, the fluorescent vesicular probe FMl-43 was used. With this probe, we observed that packets of synaptic vesicle are already present along the length of naïve neurite, which has not encountered its synaptic target. The activity-dependent loading of FMl-43 indicates that these packets can undergo exocytosis and endocytosis upon depolarization. Time-lapse recording showed that these packets are quite mobile. Upon target contact, synaptic vesicles become clustered and immobilized at the contact site. The methodology and instrumentation used in these studies are described in this article.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Cells, Cultured
  • Embryo, Nonmammalian / physiology
  • Fibroblast Growth Factor 2 / pharmacology
  • Fluorescent Dyes
  • In Vitro Techniques
  • Microscopy, Confocal
  • Microscopy, Fluorescence / instrumentation
  • Microscopy, Fluorescence / methods*
  • Muscle, Skeletal / cytology
  • Muscle, Skeletal / metabolism
  • Neurons / drug effects
  • Neurons / metabolism
  • Synapses / physiology*
  • Synaptic Vesicles / drug effects
  • Synaptic Vesicles / metabolism*
  • Xenopus / physiology

Substances

  • Fluorescent Dyes
  • Fibroblast Growth Factor 2
  • Calcium