Neural crest can form cartilages normally derived from mesoderm during development of the avian head skeleton

Dev Biol. 1999 Apr 15;208(2):441-55. doi: 10.1006/dbio.1999.9213.

Abstract

The lateral wall of the avian braincase, which is indicative of the primitive amniote condition, is formed from mesoderm. In contrast, mammals have replaced this portion of their head skeleton with a nonhomologous bone of neural crest origin. Features that characterize the local developmental environment may have enabled a neural crest-derived skeletal element to be integrated into a mesodermal region of the braincase during the course of evolution. The lateral wall of the braincase lies along a boundary in the head that separates neural crest from mesoderm, and also, neural crest cells migrate through this region on their way to the first visceral arch. Differences in the availability of one skeletogenic population versus the other may determine the final composition of the lateral wall of the braincase. Using the quail-chick chimeric system, this investigation tests if populations of neural crest, when augmented and expanded within populations of mesoderm, will give rise to the lateral wall of the braincase. Results demonstrate that neural crest can produce cartilages that are morphologically indistinguishable from elements normally generated by mesoderm. These findings (1) indicate that neural crest can respond to the same cues that both promote skeletogenesis and enable proper patterning in mesoderm, (2) challenge hypotheses on the nature of the boundary between neural crest and mesoderm in the head, and (3) suggest that changes in the allocation of migrating cells could have enabled a neural crest-derived skeletal element to replace a mesodermal portion of the braincase during evolution.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Evolution
  • Birds / embryology*
  • Body Patterning
  • Cartilage / embryology*
  • Cell Movement
  • Chick Embryo
  • Chimera
  • Coturnix
  • Head / embryology
  • Mesoderm*
  • Morphogenesis
  • Neural Crest / embryology*
  • Skull / embryology*
  • Tissue Transplantation
  • Transplantation, Heterotopic