The aims of the study were to provide valid comparative data for personal exposures to dust and endotoxins for different occupations and to calculate comparative data for the contamination of organic dusts with endotoxin. Nine different occupational settings were studied, drawn from the textile, agricultural and animal handling industries. Samples were collected by personal sampling techniques, using the Institute of Occupational Medicine (IOM) sampling head, glass fibre filters and rechargeable sampling pumps. The dust exposures were calculated by gravimetric analysis and using the calculated volume of air sampled were expressed as mg/m3. Endotoxin exposures were measured using a simple water extraction from the collected dusts, followed by a quantitative turbidimetric assay. Results were expressed as ng/m3, using the calculated volume of air sampled. In addition, the levels of the contamination of dusts with endotoxin for individual industries were expressed as ng/mg of collected dust. Two hundred and fifty-nine samples, collected from 9 different industries and across 36 different sites were analysed. This represented a sampling rate of 25% for the total work force. The average sampling time was 4.62 h. For all the dusts collected, a significant correlation between the collected dust and endotoxin was seen (r = 0.7 and p < 0.001). The highest dust exposures occurred during cleaning activities (grain handling: 72.5 mg/m3). The individuals exposed to the highest median level of dust and endotoxin were the animal handlers (poultry handlers, dust: 11.53 mg/m3, endotoxin: 71,995 ng/m3). Weaving and mushroom cultivation had the lowest exposures for dust and endotoxins. The mostly highly contaminated dusts (median values expressed as ng of endotoxin per mg of collected dust) were found in the animal handling (poultry: 1,030 ng/mg, swine: 152 ng/mg) and cotton spinning (522 ng/mg) industries. Processing of cotton and wool fibres was found to reduce the levels of contamination of dusts with endotoxin. In the study, valid comparative data for personal exposures to organic dusts and endotoxins have been presented. The highest exposures were found amongst animal handlers and during cleaning activities. The results highlight that dust exposures are greater in a number of industries than the set exposure standards. In addition, endotoxin exposures are found to be greater than levels at which harmful effects have been demonstrated.