Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 26 (5-6), 557-65

Antioxidant Properties of Melatonin: A Pulse Radiolysis Study

Affiliations

Antioxidant Properties of Melatonin: A Pulse Radiolysis Study

H S Mahal et al. Free Radic Biol Med.

Abstract

Various one-electron oxidants such as OH*, tert-BuO*, CCl3OO*, Br2*- and N3*, generated pulse radiolytically in aqueous solutions at pH 7, were scavenged by melatonin to form two main absorption bands with lambda(max) = 335 nm and 500 nm. The assignment of the spectra and determination of extinction coefficients of the transients have been reported. Rate constants for the formation of these species ranged from 0.6-12.5x10(9) dm3 mol(-1) s(-1). These transients decayed by second order, as observed in the case of Br2*- and N3* radical reactions. Both the NO2* and NO* radicals react with the substrate with k = 0.37x10(7) and 3x10(7) dm3 mol(-1) s(-1), respectively. At pH approximately 2.5, the protonated form of the transient is formed due to the reaction of Br2*- radical with melatonin, pKa ( MelH* <=> Mel* + H+) = 4.7+/-0.1. Reduction potential of the couple (Mel*/MelH), determined both by cyclic voltammetric and pulse-radiolytic techniques, gave a value E(1)7 = 0.95+/-0.02 V vs. NHE. Repair of guanosine radical and regeneration of melatonin radicals by ascorbate and urate ions at pH 7 have been reported. Reactions of the reducing radicals e(aq)- and H* atoms with melatonin have been shown to occur at near diffusion rates.

Similar articles

See all similar articles

Cited by 14 articles

See all "Cited by" articles

LinkOut - more resources

Feedback