Drugs of abuse and the brain

Proc Assoc Am Physicians. Mar-Apr 1999;111(2):99-108. doi: 10.1046/j.1525-1381.1999.09218.x.


New insights into our understanding of drug abuse and addiction have revealed that the desire to use drugs and the process of addiction depend on effects on brain function. Drugs of abuse have been hypothesized to produce their rewarding effects by neuropharmacological actions on a common brain reward circuit called the extended amygdala. The extended amygdala involves the mesolimbic dopamine system and specific subregions of the basal forebrain, such as the shell of the nucleus accumbens, the bed nucleus of the stria terminalis, and the central nucleus of the amygdala. The psychomotor stimulants cocaine and amphetamine activate the mesolimbic dopamine system; opiates activate opioid peptide receptors within and independent of the mesolimbic dopamine system. Sedative hypnotics alter multiple neurotransmitter systems in this circuitry, including: 1) gamma aminobutyric acid; 2) dopamine; 3) serotonin; 4) glutamate; and 5) opioid peptides. Nicotine and tetrahydrocannabinol both activate mesolimbic dopamine function and possibly opioid peptide systems in this circuitry. Repeated and prolonged drug abuse leads to compulsive use, and the mechanism for this transition involves, at the behavioral level, a progressive dysregulation of brain reward circuitry and a recruitment of brain stress systems such as corticotropin-releasing factor. The molecular mechanisms of signal transduction in these systems are a likely target for residual changes in that they convey allostatic changes in reward set point, which lead to vulnerability to relapse.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Brain / drug effects*
  • Brain / physiology
  • Humans
  • Pharmaceutical Preparations
  • Substance-Related Disorders / physiopathology*


  • Pharmaceutical Preparations