The three calcium-binding proteins parvalbumin, calbindin, and calretinin are found in morphologically distinct classes of inhibitory interneurons as well as in some pyramidal neurons in the mammalian neocortex. Although there is a wide variability in the qualitative and quantitative characteristics of the neocortical subpopulations of calcium-binding protein-immunoreactive neurons in mammals, most of the available data show that there is a fundamental similarity among the mammalian species investigated so far, in terms of the distribution of parvalbumin, calbindin, and calretinin across the depth of the neocortex. Thus, calbindin- and calretinin-immunoreactive neurons are predominant in layers II and III, but are present across all cortical layers, whereas parvalbumin-immunoreactive neurons are more prevalent in the middle and lower cortical layers. These different neuronal populations have well defined regional and laminar distribution, neurochemical characteristics and synaptic connections, and each of these cell types displays a particular developmental sequence. Most of the available data on the development, distribution and morphological characteristics of these calcium-binding proteins are from studies in common laboratory animals such as the rat, mouse, cat, macaque monkey, as well as from postmortem analyses in humans, but there are virtually no data on other species aside of a few incidental reports. In the context of the evolution of mammalian neocortex, the distribution and morphological characteristics of calcium-binding protein-immunoreactive neurons may help defining taxon-specific patterns that may be used as reliable phylogenetic traits. It would be interesting to extend such neurochemical analyses of neuronal subpopulations to other species to assess the degree to which neurochemical specialization of particular neuronal subtypes, as well as their regional and laminar distribution in the cerebral cortex, may represent sets of derived features in any given mammalian order. This could be particularly interesting in view of the consistent differences in neurochemical typology observed in considerably divergent orders such as cetaceans and certain families of insectivores and metatherians, as well as in monotremes. The present article provides an overview of calcium-binding protein distribution across a large number of representative mammalian species and a review of their developmental patterns in the species where data are available. This analysis demonstrates that while it is likely that the developmental patterns are quite consistent across species, at least based on the limited number of species for which ontogenetic data exist, the distribution and morphology of calcium-binding protein-containingneurons varies substantially among mammalian orders and that certain species show highly divergent patterns compared to closely related taxa. Interestingly, primates, carnivores, rodents and tree shrews appear closely related on the basis of the observed patterns, marsupials show some affinities with that group, whereas prototherians have unique patterns. Our findings also support the relationships of cetaceans and ungulates, and demonstrates possible affinities between carnivores and ungulates, as well as the existence of common, probably primitive, traits in cetaceans and insectivores.