Transforming growth factor-alpha deficiency reduces pulmonary fibrosis in transgenic mice

Am J Respir Cell Mol Biol. 1999 May;20(5):924-34. doi: 10.1165/ajrcmb.20.5.3526.

Abstract

Despite evidence that implicates transforming growth factor-alpha (TGF-alpha) in the pathogenesis of acute lung injury, the contribution of TGF-alpha to the fibroproliferative response is unknown. To determine whether the development of pulmonary fibrosis depends on TGF-alpha, we induced lung injury with bleomycin in TGF-alpha null-mutation transgenic mice and wild-type mice. Lung hydroxyproline content was 1.3, 1.2, and 1.6 times greater in wild-genotype mice than in TGF-alpha-deficient animals at Days 10, 21, and 28, respectively, after a single intratracheal injection of bleomycin. At Days 7 and 10 after bleomycin treatment, lung total RNA content was 1.5 times greater in wild-genotype mice than in TGF-alpha-deficient animals. There was no significant difference between mice of the two genotypes in lung total DNA content or nuclear labeling indices after bleomycin administration. Wild-genotype mice had significantly higher lung fibrosis scores at Days 7 and 14 after bleomycin treatment than did TGF-alpha-deficient animals. There was no significant difference between TGF-alpha-deficient mice and wild-genotype mice in lung inflammation scores after bleomycin administration. To determine whether expression of other members of the epidermal growth factor (EGF) family is increased after bleomycin-induced injury, we measured lung EGF and heparin-binding- epidermal growth factor (HB-EGF) mRNA levels. Steady-state HB-EGF mRNA levels were 321% and 478% of control values in bleomycin-treated lungs at Days 7 and 10, respectively, but were not significantly different in TGF-alpha-deficient and in wild-genotype mice. EGF mRNA was not detected in normal or bleomycin-treated lungs of mice of either genotype. These results show that TGF-alpha contributes significantly to the pathogenesis of pulmonary fibrosis after bleomycin-induced injury, and that compensatory increases in other EGF family members do not occur in TGF-alpha-deficient mice.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Bleomycin / toxicity
  • Cell Division
  • Collagen / metabolism
  • DNA / metabolism
  • DNA Primers
  • Epidermal Growth Factor / genetics
  • Genotype
  • Heparin-binding EGF-like Growth Factor
  • Intercellular Signaling Peptides and Proteins
  • Lung / cytology
  • Lung / drug effects
  • Lung / metabolism
  • Mice
  • Mice, Knockout
  • Mice, Transgenic
  • Pulmonary Fibrosis / chemically induced
  • Pulmonary Fibrosis / genetics*
  • Pulmonary Fibrosis / pathology
  • RNA / metabolism
  • Transforming Growth Factor alpha / deficiency*
  • Transforming Growth Factor alpha / genetics

Substances

  • DNA Primers
  • Hbegf protein, mouse
  • Heparin-binding EGF-like Growth Factor
  • Intercellular Signaling Peptides and Proteins
  • Transforming Growth Factor alpha
  • Bleomycin
  • Epidermal Growth Factor
  • RNA
  • Collagen
  • DNA