Performance of sonication and microfluidization for liquid-liquid emulsification

Pharm Dev Technol. 1999 May;4(2):233-40. doi: 10.1081/pdt-100101357.

Abstract

The purpose of this research was to evaluate and compare liquid-liquid emulsions (water-in-oil and oil-in-water) prepared using sonication and microfluidization. Liquid-liquid emulsions were characterized on the basis of emulsion droplet size determined using a laser-based particle size analyzer. An ultrasonic-driven benchtop sonicator and an air-driven microfluidizer were used for emulsification. Sonication generated emulsions through ultrasound-driven mechanical vibrations, which caused cavitation. The force associated with implosion of vapor bubbles caused emulsion size reduction and the flow of the bubbles resulted in mixing. An increase in viscosity of the dispersion phase improved the sonicator's emulsification capability, but an increase in the viscosity of the dispersed phase decreased the sonicator's emulsification capability. Although sonication might be comparable to homogenization in terms of emulsification efficiency, homogenization was relatively more effective in emulsifying more viscous solutions. Microfluidization, which used a high pressure to force the fluid into microchannels of a special configuration and initiated emulsification via a combined mechanism of cavitation, shear, and impact, exhibited excellent emulsification efficiency. Of the three methodologies, sonication generated more heat and might be less suitable for emulsion systems involving heat-sensitive materials. Homogenization is in general a more effective liquid-liquid emulsification method. The results derived from this study can serve as a basis for the evaluation of large-scale liquid-liquid emulsification in the microencapsulation process.

MeSH terms

  • Emulsions*
  • Sonication*
  • Technology, Pharmaceutical*
  • Viscosity

Substances

  • Emulsions