The therapeutic opioid methadone, used to treat cancer pain and opioid addiction, is also a potent inducer of apoptosis in human lung cancer cells, thereby inhibiting their growth. However, in contrast to its central nervous system (CNS) actions, this effect appears to be mediated through a non-opioid mechanism involving bombesin, an autocrine growth-stimulatory factor that plays a central role in the early events of pulmonary carcinogenesis. Exposure of 'variant' small cell lung carcinoma (SCLC) and non-SCLC cells, which secrete low concentrations (< 0.01 pmol/mg protein) of bombesin, to nanomolar concentrations of methadone resulted in increased levels of mitogen-activated protein (MAP) kinase phosphatases and inactivation of MAP kinase, suppression of the bcl-2 protein, and induction of apoptosis. These effects of methadone were reversed by the addition of bombesin to the culture medium, at concentrations of < 1 microM, and 'classic' SCLC cells, which secrete high concentrations of bioactive bombesin (> 6 pmol/mg protein), were found not to respond to methadone. Thus, methadone's effectiveness is dependent upon the concentration of bioactive bombesin secreted by lung cancer cells. Methadone treatment suggests a novel therapeutic approach for patients presenting 'variant' SCLC and non-SCLC morphologies, since they respond less to conventional therapy.