We have identified and cloned a new member of the mammalian tandem pore domain K+ channel subunit family, TWIK-originated similarity sequence, from a human testis cDNA library. The 939 bp open reading frame encodes a 313 amino acid polypeptide with a calculated Mr of 33.7 kDa. Despite the same predicted topology, there is a relatively low sequence homology between TWIK-originated similarity sequence and other members of the mammalian tandem pore domain K+ channel subunit family group. TWIK-originated similarity sequence shares a low (< 30%) identity with the other mammalian tandem pore domain K+ channel subunit family group members and the highest identity (34%) with TWIK-1 at the amino acid level. Similar low levels of sequence homology exist between all members of the mammalian tandem pore domain K+ channel subunit family. Potential glycosylation and consensus PKC sites are present. Northern analysis revealed species and tissue-specific expression patterns. Expression of TWIK-originated similarity sequence is restricted to human pancreas, placenta and heart, while in the mouse, TWIK-originated similarity sequence is expressed in the liver. No functional currents were observed in Xenopus laevis oocytes or HEK293T cells, suggesting that TWIK-originated similarity sequence may be targeted to locations other than the plasma membrane or that TWIK-originated similarity sequence may represent a novel regulatory mammalian tandem pore domain K+ channel subunit family subunit.