Escherichia coli as a pathogen in dogs and cats

Vet Res. Mar-Jun 1999;30(2-3):285-98.

Abstract

Certain strains of Escherichia coli behave as pathogens in dogs and cats causing gastro-intestinal and extra-intestinal diseases. Among the five known groups of diarrhoeagenic E. coli, namely enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), shiga-toxin producing E. coli (STEC) and enteroaggregative E. coli (EAggEC), only EPEC and ETEC were clearly associated with enteric disease in young dogs. ETEC isolates from diarrhoeic dogs were found to be positive for the heat-stable enterotoxins STa and STb but negative for heat-labile enterotoxin (LT). Canine ETEC were found to be different from those of other animals and humans by their serotypes, production of alpha-haemolysin and adhesive factors and by the production of uncharacterized types of enterotoxins by some ETEC. Canine EPEC could be distinguished from EPEC of humans or other animals by their serotypes and by the eae-protein intimin which mediates intimate adherence of EPEC to intestinal mucosa cells. STEC were occasionally isolated from faeces of healthy and diarrhoeic dogs but their role in canine diarrhoea is not yet well known. EIEC and EAggEC were not reported to occur in dogs or cats. Very little is known on diarrhoegenic E. coli in cats and further epidemiological investigations on this subject are needed. Besides its role in gastro-intestinal infections, E. coli can cause infections of the urogenital tract and systemic disease in dogs and cats. Extra-intestinal pathogenic E. coli strains from dogs and cats belong to a limited number of serotypes and clonal groups and are frequently found as a part of the normal gut flora of these animals. Many of these E. coli strains carry P-fimbriae and produce alpha-haemolysin and a necrotizing cytotoxin (CNF1). Some of the frequently isolated types of extra-intestinal pathogenic E. coli from dogs, cats and humans were found to be highly genetically related but showed differences in their P-fimbrial adhesins which determine host specificity. Transmission of extra-intestinal and enteral pathogenic E. coli between dogs and humans was reported. Further research is needed, however, to determine the role of dogs and cats as transmission vectors of pathogenic E. coli strains to other animals and humans.

Publication types

  • Review

MeSH terms

  • Animals
  • Cat Diseases / microbiology*
  • Cats
  • Dog Diseases / microbiology*
  • Dogs
  • Enterotoxins / biosynthesis
  • Escherichia coli / pathogenicity*
  • Escherichia coli Infections / microbiology
  • Escherichia coli Infections / veterinary*
  • Gastrointestinal Diseases / microbiology
  • Gastrointestinal Diseases / veterinary
  • Virulence

Substances

  • Enterotoxins