Glutamate neurotoxicity in rat cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment

J Neurochem. 1999 Jul;73(1):237-46. doi: 10.1046/j.1471-4159.1999.0730237.x.

Abstract

To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate-treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH-b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3-phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate-treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time-dependent, an index of the progressive damage of the cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cerebellum / drug effects
  • Cerebellum / metabolism*
  • Cerebellum / ultrastructure
  • Cytochrome c Group / metabolism*
  • Dihydroxyacetone Phosphate / metabolism
  • Electron Transport Complex II
  • Electron Transport Complex III / metabolism
  • Glutamic Acid / toxicity*
  • Glycerophosphates / metabolism
  • Malates / metabolism
  • Mitochondria / drug effects*
  • Mitochondria / metabolism*
  • Multienzyme Complexes / metabolism
  • NAD / metabolism
  • NAD(P)H Dehydrogenase (Quinone) / metabolism
  • Oxaloacetic Acid / metabolism
  • Oxidation-Reduction
  • Oxidoreductases / metabolism
  • Oxygen Consumption
  • Rats
  • Succinate Dehydrogenase / metabolism

Substances

  • Cytochrome c Group
  • Glycerophosphates
  • Malates
  • Multienzyme Complexes
  • NAD
  • Oxaloacetic Acid
  • Glutamic Acid
  • Dihydroxyacetone Phosphate
  • malic acid
  • alpha-glycerophosphoric acid
  • Oxidoreductases
  • Electron Transport Complex II
  • Succinate Dehydrogenase
  • NAD(P)H Dehydrogenase (Quinone)
  • Electron Transport Complex III