Purpose: To characterize the central nervous system (CNS) pathway for acupuncture stimulation in the human brain by using functional magnetic resonance (MR) imaging.
Materials and methods: Functional MR imaging of the whole brain was performed in two groups of nine healthy subjects during four stimulation paradigms: real acupuncture at acupoints ST.36 (on the leg) and LI.4 (on the hand) and control stimulations (minimal acupuncture and superficial pricking on the leg). Stimulations were performed in semirandomized, balanced order nested within two experiments. Psychophysical responses (pain, De-Qi effect [characteristic acupuncture effect of needle-manipulation sensation], anxiety, and unpleasantness) and autonomic responses were assessed. Talairach coordinates-transformed imaging data were averaged for a group analysis.
Results: Acupuncture at LI.4 and ST.36 resulted in significantly higher scores for De-Qi and in substantial bradycardia. Acupuncture at both acupoints resulted in activation of the hypothalamus and nucleus accumbens and deactivation of the rostral part of the anterior cingulate cortex, amygdala formation, and hippocampal complex; control stimulations did not result in such activations and deactivations.
Conclusion: Functional MR imaging can demonstrate the CNS pathway for acupuncture stimulation. Acupuncture at ST.36 and LI.4 activates structures of descending antinociceptive pathway and deactivates multiple limbic areas subserving pain association. These findings may shed light on the CNS mechanism of acupuncture analgesia and form a basis for future investigations of endogenous pain modulation circuits in the human brain.