Chromatid cohesion during mitosis: lessons from meiosis

J Cell Sci. 1999 Aug:112 ( Pt 16):2607-13. doi: 10.1242/jcs.112.16.2607.

Abstract

The equal distribution of chromosomes during mitosis and meiosis is dependent on the maintenance of sister chromatid cohesion. In this commentary we review the evidence that, during meiosis, the mechanism underlying the cohesion of chromatids along their arms is different from that responsible for cohesion in the centromere region. We then argue that the chromatids on a mitotic chromosome are also tethered along their arms and in the centromere by different mechanisms, and that the functional action of these two mechanisms can be temporally separated under various conditions. Finally, we demonstrate that in the absence of a centromeric tether, arm cohesion is sufficient to maintain chromatid cohesion during prometaphase of mitosis. This finding provides a straightforward explanation for why mutants in proteins responsible for centromeric cohesion in Drosophila (e.g. ord, mei-s332) disrupt meiosis but not mitosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Anaphase / physiology*
  • Animals
  • Chromatids / physiology*
  • Meiosis / physiology*
  • Mitosis / physiology*