We examined the importance of the Rho family GTPase Rac1 for cyclin D(1) promoter transcriptional activation in bovine tracheal myocytes. Overexpression of active Rac1 induced transcription from the cyclin D(1) promoter, whereas platelet-derived growth factor (PDGF)-induced transcription was inhibited by a dominant-negative allele of Rac1, suggesting that Rac1 functions as an upstream activator of cyclin D(1) in this system. Rac1 forms part of the NADPH oxidase complex that generates reactive oxygen species such as H(2)O(2). PDGF stimulated a substantial increase in intracellular reactive oxygen species, as measured by the fluorescence of dichlorofluorescein-loaded cells, and this was blocked by the glutathione peroxidase mimetic ebselen. Pretreatment with ebselen, catalase, and the flavoprotein inhibitor diphenylene iodonium each attenuated PDGF- and Rac1-mediated cyclin D(1) promoter activation, while having no effect on the induction of cyclin D(1) by mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase-1 (MEK1), the upstream activator of ERKs. Antioxidant treatment also inhibited PDGF-induced cyclin D(1) protein expression and DNA synthesis. Overexpression of an N-terminal fragment of p67(phox), a component of NADPH oxidase which interacts with Rac1, attenuated PDGF-induced cyclin D(1) promoter activity, whereas overexpression of the wild-type p67 did not. Finally, Rac1 was neither required nor sufficient for ERK activation. Taken together, these data suggest a model by which two distinct signaling pathways, the ERK and Rac1 pathways, positively regulate cyclin D(1) and smooth muscle growth.