A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal

Genes Dev. 1999 Jul 15;13(14):1847-60. doi: 10.1101/gad.13.14.1847.

Abstract

The transcription factor GATA-2 is expressed in hematopoietic stem and progenitor cells and is functionally implicated in their survival and proliferation. We have used estrogen and tamoxifen-inducible forms of GATA-2 to modulate the levels of GATA-2 in the IL-3-dependent multipotential hematopoietic progenitor cell model FDCP mix. Ligand-dependent induction of exogenous GATA-2 activity did not rescue cells deprived of IL-3 from apoptosis. However, induction of GATA-2 activity in cells cultured in IL-3 blocked factor-dependent self-renewal but not factor-dependent survival: Cells undergo cell cycle arrest and cease proliferating but do not apoptose. This was accompanied by differentiation down the monocytic and granulocytic pathways. Differentiation occurred in the presence of IL-3 and did not require addition of exogenous differentiation growth factors such as G-CSF or GM-CSF normally required to induce granulomonocytic differentiation of FDCP-mix cells. Conversely, EPO-dependent erythroid differentiation was inhibited by GATA-2 activation. These biological effects were obtained with levels of exogenous GATA-2 representing less than twofold increases over endogenous GATA-2 levels and were not observed in cells overexpressing GATA-1/ER. Similar effects on proliferation and differentiation were also observed in primary progenitor cells, freshly isolated from murine bone marrow and transduced with a GATA-2/ER-containing retrovirus. Taken together, these data suggest that threshold activities of GATA-2 in hematopoietic progenitor cells are a critical determinant in influencing self-renewal versus differentiation outcomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Cell Differentiation / genetics
  • Cell Line
  • Cell Lineage
  • DNA Primers
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Erythroid-Specific DNA-Binding Factors
  • GATA1 Transcription Factor
  • GATA2 Transcription Factor
  • Gene Expression Regulation, Developmental
  • Ligands
  • Mice
  • Receptors, Estrogen / genetics
  • Receptors, Estrogen / metabolism*
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • DNA Primers
  • DNA-Binding Proteins
  • Erythroid-Specific DNA-Binding Factors
  • GATA1 Transcription Factor
  • GATA2 Transcription Factor
  • Gata1 protein, mouse
  • Gata2 protein, mouse
  • Ligands
  • Receptors, Estrogen
  • Recombinant Fusion Proteins
  • Transcription Factors