The assembly of 6-12 subunits of Ca(2+)/calmodulin-dependent kinase II (CaM kinase II) into holoenzymes is an important structural feature of the enzyme and its postulated role as a molecular detector of Ca(2+) oscillations. Using single cell reverse transcriptase-polymerase chain reaction, we show that alpha- and beta-CaM kinase II mRNAs are simultaneously present in the majority of hippocampal neurons examined and that co-assembly of their protein products into heteromers is therefore possible. The subunit composition of CaM kinase II holoenzymes was analyzed by immunoprecipitation with subunit-specific monoclonal antibodies. Rat forebrain CaM kinase II consists of heteromers composed of alpha and beta subunits at a ratio of 2:1 and homomers composed of only alpha subunits. We examined the functional effect of the heteromeric assembly by analyzing the calmodulin dependence of autophosphorylation. Recombinant homomers of alpha- or beta-CaM kinase II, as well as of alternatively spliced beta isoforms, have distinct calmodulin dependences for autophosphorylation based on differences in their calmodulin affinities. Half-maximal autophosphorylation of alpha is achieved at 130 nM calmodulin, while that for beta occurs at 15 nM calmodulin. In CaM kinase II isolated from rat forebrain, however, the calmodulin dependence for autophosphorylation of the beta subunits is shifted toward that of alpha homomers. This suggests that Thr(287) in beta subunits is phosphorylated by alpha subunits present in the same holoenzyme. Once autophosphorylated, beta-CaM kinase II traps calmodulin by reducing the rate of calmodulin dissociation.