Molecular dissection of the folding mechanism of the alpha subunit of tryptophan synthase: an amino-terminal autonomous folding unit controls several rate-limiting steps in the folding of a single domain protein

Biochemistry. 1999 Aug 3;38(31):10205-14. doi: 10.1021/bi9909041.

Abstract

The alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli is a 268-residue 8-stranded beta/alpha barrel protein. Two autonomous folding units, comprising the first six strands (residues 1-188) and the last two strands (residues 189-268), have been previously identified in this single structural domain protein by tryptic digestion [Higgins, W., Fairwell, T., and Miles, E. W. (1979) Biochemistry 18, 4827-4835]. The larger, amino-terminal fragment, alphaTS(1-188), was overexpressed and independently purified, and its equilibrium and kinetic folding properties were studied by absorbance, fluorescence, and near- and far-UV circular dichroism spectroscopies. The native state of the fragment unfolds cooperatively in an apparent two-state transition with a stability of 3.98 +/- 0.19 kcal mol(-1) in the absence of denaturant and a corresponding m value of 1.07 +/- 0.05 kcal mol(-1) M(-1). Similar to the full-length protein, the unfolding of the fragment shows two kinetic phases which arise from the presence of two discrete native state populations. Additionally, the fragment exhibits a significant burst phase in unfolding, indicating that a fraction of the folded state ensemble under native conditions has properties similar to those of the equilibrium intermediate populated at 3 M urea in full-length alphaTS. Refolding of alphaTS(1-188) is also complex, exhibiting two detectable kinetic phases and a burst phase that is complete within 5 ms. The two slowest isomerization phases observed in the refolding of the full-length protein are absent in the fragment, suggesting that these phases reflect contributions from the carboxy-terminal segment. The folding mechanism of alphaTS(1-188) appears to be a simplified version of the mechanism for the full-length protein [Bilsel, O., Zitzewitz, J. A., Bowers, K.E, and Matthews, C. R.(1999) Biochemistry 38, 1018-1029]. Four parallel channels in the full-length protein are reduced to a pair of channels that most likely reflect a cis/trans proline isomerization reaction in the amino-terminal fragment. The off- and on-pathway intermediates that exist for both full-length alphaTS and alphaTS(1-188) may reflect the preponderance of local interactions in the beta/alpha barrel motif.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Circular Dichroism
  • Enzyme Stability
  • Escherichia coli / enzymology
  • Kinetics
  • Models, Molecular
  • Peptide Fragments / chemistry*
  • Peptide Fragments / metabolism
  • Protein Denaturation
  • Protein Folding*
  • Protein Structure, Tertiary
  • Structure-Activity Relationship
  • Tryptophan Synthase / chemistry*
  • Tryptophan Synthase / metabolism
  • Ultracentrifugation
  • Urea

Substances

  • Peptide Fragments
  • Urea
  • Tryptophan Synthase