Background and purpose: Cortical reorganization of motor systems has been found in recovered stroke patients. Reorganization in nonrecovered hemiplegic stroke patients early after stroke, however, is less well described. We used positron emission tomography to study the functional reorganization of motor and sensory systems in hemiplegic stroke patients before motor recovery.
Methods: Regional cerebral blood flow (rCBF) was measured in 6 hemiplegic stroke patients with a single, subcortical infarct and 3 normal subjects with the [(15)O]H(2)O injection technique. Brain activation was achieved by passive elbow movements driven by a torque motor. Increases of rCBF comparing passive movements and rest were assessed with statistical parametric mapping. Significant differences were defined at P<0.01.
Results: In normal subjects, significant increases of rCBF were found in the contralateral sensorimotor cortex, supplementary motor area, cingulate cortex, and bilaterally in the inferior parietal cortex. In stroke patients, significant activation was observed bilaterally in the inferior parietal cortex and in the contralateral sensorimotor cortex, ipsilateral prefrontal cortex, supplementary motor area, and cingulate cortex. Significantly larger increases of rCBF in patients compared with normal subjects were found bilaterally in the sensorimotor cortex, stronger in the ipsilateral, unaffected hemisphere, and in both parietal lobes, including the ipsilateral precuneus.
Conclusions: Passive movements in hemiplegic stroke patients before clinical recovery elicit some of the brain activation patterns that have been described during active movements after substantial motor recovery. Changes of cerebral activation in sensory and motor systems occur early after stroke and may be a first step toward restoration of motor function after stroke.