Long-distance rotational echo double resonance measurements for the determination of secondary structure and conformational heterogeneity in peptides

Solid State Nucl Magn Reson. 1999 Jul;14(2):117-36. doi: 10.1016/s0926-2040(99)00018-1.

Abstract

The utility of rotational echo double resonance (REDOR) NMR spectroscopy for determining the conformations of linear peptides has been examined critically using a series of crystalline and amorphous samples. The focus of the present work was the evaluation of long-distance (> 5 A) interactions using 13C-15N dephasing. Detailed studies of specifically labeled melanostatin and synthetic analogs of the alpha-factor yeast mating hormone show that nitrogen-dephased, carbon-observe REDOR measurements are reliable for distances up to 6.0 A, and that dipolar interactions can be detected for distances up to 7 A. By contrast, nitrogen-observe REDOR gives reliable results only for distances shorter than 5.0 A. To measure distances accurately, REDOR data must be corrected for the effects of natural-abundance spins. These corrections are particularly important for measuring long distances, which are of the greatest value for determining peptide secondary structure. We have developed a spherical shell model for calculating the effect of these background spins. The REDOR studies also indicate that in a lyophilized powder, the tridecapeptide alpha-factor mating pheromone from Saccharomyces cerevisiae (WHWLQLKPGQPMY) probably exists as a distribution of different turn structures around the KPGQ region. This finding revises previous solid-state NMR studies on this peptide, which concluded alpha-factor assumes a distorted type-I beta-turn in the Pro-Gly central region of the molecule [J.R. Garbow, M. Breslav, O. Antohi, F. Naider, Biochemistry, 33 (1994) 10094].

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Amino Acid Sequence
  • Chromatography, High Pressure Liquid
  • Freeze Drying
  • Magnetic Resonance Spectroscopy
  • Molecular Sequence Data
  • Peptides / chemical synthesis
  • Peptides / chemistry*
  • Protein Conformation
  • Protein Structure, Secondary

Substances

  • Peptides