Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells

J Virol. 1999 Sep;73(9):7297-307. doi: 10.1128/JVI.73.9.7297-7307.1999.

Abstract

The E6 proteins from cervical cancer-associated human papillomavirus (HPV) types such as HPV type 16 (HPV-16) induce proteolysis of the p53 tumor suppressor protein through interaction with E6-AP. We have previously shown that human mammary epithelial cells (MECs) immortalized by HPV-16 E6 display low levels of p53. HPV-16 E6 as well as other cancer-related papillomavirus E6 proteins also binds the cellular protein E6BP (ERC-55). To explore the potential functional significance of these interactions, we created and analyzed a series of E6 mutants for their ability to interact with E6-AP, p53, and E6BP in vitro. While there was a similar pattern of binding among these E6 targets, a subset of mutants differentiated E6-AP binding, p53 binding, and p53 degradation activities. These results demonstrated that E6 binding to E6-AP is not sufficient for binding to p53 and that E6 binding to p53 is not sufficient for inducing p53 degradation. The in vivo activity of these HPV-16 E6 mutants was tested in MECs. In agreement with the in vitro results, most of these p53 degradation-defective E6 mutants were unable to reduce the p53 level in early-passage MECs. Interestingly, several mutants that showed severely reduced ability for interacting with E6-AP, p53, and E6BP in vitro efficiently immortalized MECs. These immortalized cells exhibited low p53 levels at late passage. Furthermore, mutants defective for p53 degradation but able to immortalize MECs were also identified, and the immortal cells retained normal levels of p53 protein. These results imply that multiple functions of HPV-16 E6 contribute to MEC immortalization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Breast / cytology
  • Breast / virology*
  • Cell Transformation, Viral
  • Epithelial Cells
  • Female
  • Humans
  • Mutagenesis, Site-Directed
  • Oncogene Proteins, Viral / genetics
  • Oncogene Proteins, Viral / metabolism
  • Oncogene Proteins, Viral / physiology*
  • Papillomaviridae / physiology*
  • Rabbits
  • Repressor Proteins*
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • E6 protein, Human papillomavirus type 16
  • Oncogene Proteins, Viral
  • Repressor Proteins
  • Tumor Suppressor Protein p53