Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999;7(1):31-8.
doi: 10.1002/(sici)1522-7189(199902)7:1<31::aid-nt36>3.0.co;2-w.

Oxidative deamination of hydrolyzed fumonisin B(1) (AP(1)) by cultures of Exophiala spinifera

Affiliations

Oxidative deamination of hydrolyzed fumonisin B(1) (AP(1)) by cultures of Exophiala spinifera

B A Blackwell et al. Nat Toxins. 1999.

Abstract

Fumonisins are mycotoxins of world-wide distribution in maize infected by the fungus Fusarium verticillioides. They are highly toxic to certain livestock and are potential carcinogens. Exophiala spinifera, a black yeast fungus found on moldy maize kernels, was identified previously as capable of growing on fumonisin B1 as a sole carbon source and thus is a potential source for fumonisin detoxifying enzymes. Pure cultures of E. spinifera transform fumonisin B(1) to the amino polyol AP(1) plus free tricarballylic acid through the activity of a soluble extracellular esterase, and further transformation is evidenced by accumulation in culture supernatant of a less polar compound(s) lacking a fluorescamine-reactive amino group. A free amine is thought to be critical for biological activity of FB(1) or AP(1). As a first step towards characterizing this amine-modifying activity, we investigated the biotransformation of AP(1) by E. spinifera liquid cultures that had been previously grown in liquid medium containing AP(1) as a sole carbon source. Accumulation of AP(1)-derived metabolites was monitored by thin-layer chromatography of culture supernatants, and product metabolites were purified and evaluated by mass spectrometry and nuclear magnetic resonance. Two products of treatment of purified AP(1) with cultures of E. spinifera are shown to be N-acetyl AP(1) and a new compound, 2-oxo-12,16-dimethyl-3,5,10, 14,15-icosanepentol hemiketal (or 2-OP(1) hemiketal).

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources