We describe an electrophysiological preparation of the neuromuscular junction of the nematode C. elegans, which adds to its considerable genetic and genomic resources. Mutant analysis, pharmacology and patch-clamp recording showed that the body wall muscles of wild-type animals expressed a GABA receptor and two acetylcholine receptors. The muscle GABA response was abolished in animals lacking the GABA receptor gene unc-49. One acetylcholine receptor was activated by the nematocide levamisole. This response was eliminated in mutants lacking either the unc-38 or unc-29 genes, which encode alpha and non-alpha acetylcholine receptor subunits, respectively. The second, previously undescribed, acetylcholine receptor was activated by nicotine, desensitized rapidly and was selectively blocked by dihydro-beta-erythroidine, thus explaining the residual motility of unc-38 and unc-29 mutants. By recording spontaneous endogenous currents and selectively eliminating each of these receptors, we demonstrated that all three receptor types function at neuromuscular synapses.