Vagal nerve activity and the high frequency peak of the heart rate variability

Int J Artif Organs. 1999 May;22(5):324-8.

Abstract

For the Quality of life (QOL) of patients with an artificial heart system, monitoring an information of the cardiovascular control system may be important. We have been evaluating the autonomic nervous system for that purpose. Recently, fluctuations in hemodynamic parameters including heart rate variability (HRV) were evaluated by means of spectral analysis and nonlinear mathematical analysis. Respiratory wavers in HRV were thought to reflect ongoing information of the parasympathetic nerve activity. Is it true? In order to confirm this hypothesis, we recorded vagal nerve activity directly in the chronic animal experiments. Six healthy adult goats were anesthetized with Halothene inhalation and thoracotomy were performed by the fourth lib resection during mechanical ventilation. Arterial blood pressure, right and left atrial pressures were continuously monitored with the catheter insertion. Cardiac output was measured by the electromagnetic flowmeter attached to the ascending aorta. After the chest was closed, incision was made to the left neck and left vagal nerve was separated. Stainless steel electrodes were inserted into the vagal nerve and fixed by the plasticizer. After the incision was closed, the goats were transferred to the cage and extubated after waking. Hemodynamic parameters and vagal nerve activity were measured in the awake condition. The results showed that clear observation of the autonomic nerve discharges were embodied by this experimental system. The vagal nerve discharges were synchronized with heart beat and respiration. The vagal nerve tonus was significantly influenced by the hemodynamic alteration. However in some condition, the respiratory wave was not always consistent with tonus of the vagal nerve activity, thus suggesting that we should check another information to evaluate the parasympathetic tone. We must continue this study to evaluate an autonomic nerve during artificial heart circulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Pressure
  • Cardiac Output
  • Electrocardiography
  • Electrodes, Implanted
  • Electrophysiology
  • Goats
  • Heart Rate / physiology*
  • Respiration
  • Vagus Nerve / physiology*