Contextual influences in V1 as a basis for pop out and asymmetry in visual search
- PMID: 10468643
- PMCID: PMC17923
- DOI: 10.1073/pnas.96.18.10530
Contextual influences in V1 as a basis for pop out and asymmetry in visual search
Abstract
I use a model to show how simple, bottom-up, neural mechanisms in primary visual cortex can qualitatively explain the preattentive component of complex psychophysical phenomena of visual search for a target among distracters. Depending on the image features, the speed of search ranges from fast, when a target pops-out or is instantaneously detectable, to very slow, and it can be asymmetric with respect to switches between the target and distracter objects. It has been unclear which neural mechanisms or even cortical areas control the ease of search, and no physiological correlate has been found for search asymmetry. My model suggests that contextual influences in V1 play a significant role.
Figures
Similar articles
-
Psychophysical tests of the hypothesis of a bottom-up saliency map in primary visual cortex.PLoS Comput Biol. 2007 Apr 6;3(4):e62. doi: 10.1371/journal.pcbi.0030062. Epub 2007 Feb 20. PLoS Comput Biol. 2007. PMID: 17411335 Free PMC article.
-
A feedback model of visual attention.J Cogn Neurosci. 2004 Mar;16(2):219-37. doi: 10.1162/089892904322984526. J Cogn Neurosci. 2004. PMID: 15068593
-
The role of primary visual cortex (V1) in visual awareness.Vision Res. 2000;40(10-12):1507-21. doi: 10.1016/s0042-6989(99)00243-6. Vision Res. 2000. PMID: 10788655
-
Neural connections and receptive field properties in the primary visual cortex.Neuroscientist. 2002 Oct;8(5):443-56. doi: 10.1177/107385802236967. Neuroscientist. 2002. PMID: 12374429 Review.
-
The "silent" surround of V1 receptive fields: theory and experiments.J Physiol Paris. 2003 Jul-Nov;97(4-6):453-74. doi: 10.1016/j.jphysparis.2004.01.023. J Physiol Paris. 2003. PMID: 15242657 Review.
Cited by
-
Relative contributions of oculomotor capture and disengagement to distractor-related dwell times in visual search.Sci Rep. 2023 Oct 4;13(1):16676. doi: 10.1038/s41598-023-43604-x. Sci Rep. 2023. PMID: 37794059 Free PMC article.
-
Measuring uncertainty in human visual segmentation.PLoS Comput Biol. 2023 Sep 25;19(9):e1011483. doi: 10.1371/journal.pcbi.1011483. eCollection 2023 Sep. PLoS Comput Biol. 2023. PMID: 37747914 Free PMC article.
-
Generalizing biological surround suppression based on center surround similarity via deep neural network models.PLoS Comput Biol. 2023 Sep 22;19(9):e1011486. doi: 10.1371/journal.pcbi.1011486. eCollection 2023 Sep. PLoS Comput Biol. 2023. PMID: 37738258 Free PMC article.
-
Measuring uncertainty in human visual segmentation.ArXiv [Preprint]. 2023 Oct 11:arXiv:2301.07807v3. ArXiv. 2023. PMID: 36824425 Free PMC article. Updated. Preprint.
-
Distinct early and late neural mechanisms regulate feature-specific sensory adaptation in the human visual system.Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2216192120. doi: 10.1073/pnas.2216192120. Epub 2023 Feb 1. Proc Natl Acad Sci U S A. 2023. PMID: 36724257 Free PMC article.
References
-
- Treisman A, Gelade G A. Cognit Psychol. 1980;12:97–136. - PubMed
-
- Julesz B. Nature (London) 1981;290:91–97. - PubMed
-
- Treisman A, Gormican S. Pyschol Rev. 1988;95:15–48. - PubMed
-
- Duncan J, Humphreys G. Psychol Rev. 1989;96:1–26. - PubMed
-
- Wolfe J M, Cave K R, Franzel S L. J Exp Psychol. 1989;15:419–433. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
