Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr

J Biol Chem. 1999 Sep 10;274(37):26185-91. doi: 10.1074/jbc.274.37.26185.

Abstract

The phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) phosphorylates sugars and regulates cellular metabolic processes using a phosphoryl transfer chain including the general energy coupling proteins, Enzyme I (EI) and HPr as well as the sugar-specific Enzyme II complexes. Analysis of the Escherichia coli genome has revealed the presence of 5 paralogues of EI and 5 paralogues of HPr, most of unknown function. The ptsP gene encodes an EI paralogue designated Enzyme I(nitrogen) (EI(Ntr)), and two genes located in the rpoN operon encode PTS protein paralogues, NPr and IIA(Ntr), both implicated in the regulation of sigma(54) activity. The ptsP gene was polymerase chain reaction amplified from the E. coli chromosome and cloned into an overexpression vector allowing the overproduction and purification of EI(Ntr). EI(Ntr) was shown to phosphorylate NPr in vitro using either a [(32)P]PEP-dependent protein phosphorylation assay or a quantitative sugar phosphorylation assay. EI(Ntr) phosphorylated NPr but not HPr, whereas Enzyme I exhibited a strong preference for HPr. These two pairs of proteins (EI(Ntr)/NPr and EI/HPr) thus exhibit little cross-reactivity. Phosphoryl transfer from PEP to NPr catalyzed by EI(Ntr) has a pH optimum of 8.0, is dependent on Mg(2+), is stimulated by high ionic strength, and exhibits two K(m) values for NPr (2 and 10 microM) possibly because of negative cooperativity. The results suggest that E. coli possesses at least two distinct PTS phosphoryl transfer chains, EI(Ntr) --> NPr --> IIA(Ntr) and EI --> HPr --> IIA(sugar). Sequence comparisons allow prediction of residues likely to be important for specificity. This is the first report demonstrating specificity at the level of the energy coupling proteins of the PTS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Cations, Divalent
  • DNA Primers
  • Enzyme Inhibitors / pharmacology
  • Escherichia coli / enzymology*
  • Hydrogen-Ion Concentration
  • Molecular Sequence Data
  • Phosphoenolpyruvate Sugar Phosphotransferase System / antagonists & inhibitors
  • Phosphoenolpyruvate Sugar Phosphotransferase System / chemistry
  • Phosphoenolpyruvate Sugar Phosphotransferase System / metabolism*
  • Phosphotransferases (Nitrogenous Group Acceptor) / antagonists & inhibitors
  • Phosphotransferases (Nitrogenous Group Acceptor) / chemistry
  • Phosphotransferases (Nitrogenous Group Acceptor) / metabolism*
  • Sequence Homology, Amino Acid
  • Substrate Specificity

Substances

  • Cations, Divalent
  • DNA Primers
  • Enzyme Inhibitors
  • Phosphoenolpyruvate Sugar Phosphotransferase System
  • Phosphotransferases (Nitrogenous Group Acceptor)
  • phosphoenolpyruvate-protein phosphotransferase