Pharmacological characterization of ATP- and LPS-induced IL-1beta release in human monocytes

Br J Pharmacol. 1999 Aug;127(8):1915-21. doi: 10.1038/sj.bjp.0702732.


1. We have utilized the human monocytic cell line, THP-1, and freshly isolated adherent human monocytes with the compounds pyridoxalphosphate-6-azophenyl-2',4'-disuphonic acid (PPADS), oxidized ATP, and 1-(N, O-bis[5-isoquinolinesufonyll]-N-methyl-L-tyrosyl)-4-phenylpiper azi ne (KN-62) to pharmacologically characterize the P2 receptor involved in ATP-induced release of interleukin 1beta (IL-1beta). We have also investigated the involvement of P2 receptors in lipopolysaccharide (LPS)-induced IL-1beta release from both cell types. 2. ATP caused release of IL-1beta from LPS primed THP-1 cells in both a time- and concentration-dependent manner, with a minimal effective ATP concentration of 1 mM. Stimulation of cells with 5 mM ATP resulted in detectable concentrations of IL-1beta in cell supernatants within 30 min. 3. The ATP analogue benzoylbenzoyl ATP (DBATP), a P2X7 receptor agonist, was approximately 10 fold more potent than ATP at eliciting IL-1beta release. 4. KN-62 (1 micro M), PPADS (100 microM) or oxidized ATP (100 uM) significantly inhibited 5 mM ATP-induced IL-1beta release by 81, 90 and 66% respectively, but failed to significantly inhibit LPS-induced IL-1beta release in both THP-1 cells and in freshly isolated human monocytes. 5. In both THP-1 cells and freshly isolated human monocytes, addition of the ATP degrading enzyme apyrase (0.4 U ml(-1)) to cell supernatants prior to LPS activation failed to significantly inhibit the LPS-induced IL-1beta release. In addition there was no correlation between extracellular ATP concentrations and IL-1beta release in THP-1 cells when studied over a 6 h time period. 6. In conclusion our data confirm the involvement of P2X7 receptors in ATP-induced IL-1beta release in human monocytes. However no evidence was obtained which would support the involvement of either endogenous ATP release or P2X7 receptor activation as the mechanism by which LPS-induces IL-1beta release in either the THP-1 cell line or in freshly isolated human monocytes.

MeSH terms

  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / analogs & derivatives
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / pharmacology
  • Adenosine Triphosphate / analogs & derivatives
  • Adenosine Triphosphate / metabolism
  • Adenosine Triphosphate / pharmacology*
  • Cell Line
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Interleukin-1 / metabolism*
  • L-Lactate Dehydrogenase / drug effects
  • L-Lactate Dehydrogenase / metabolism
  • Lipopolysaccharides / pharmacology*
  • Monocytes / drug effects*
  • Monocytes / metabolism
  • Purinergic P2 Receptor Antagonists
  • Pyridoxal Phosphate / analogs & derivatives
  • Pyridoxal Phosphate / pharmacology
  • Receptors, Purinergic P2 / drug effects*
  • Receptors, Purinergic P2X7


  • Enzyme Inhibitors
  • Interleukin-1
  • Lipopolysaccharides
  • P2RX7 protein, human
  • Purinergic P2 Receptor Antagonists
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2X7
  • pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid
  • 2',3'-dialdehyde ATP
  • Pyridoxal Phosphate
  • KN 62
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
  • Adenosine Triphosphate
  • L-Lactate Dehydrogenase