The ability of "low G + C gram-positive" ruminal bacteria to resist monensin and counteract potassium depletion

Curr Microbiol. 1999 Oct;39(4):226-30. doi: 10.1007/s002849900449.


Gram-negative ruminal bacteria with an outer membrane are generally more resistant to the feed additive, monensin, than Gram-positive species, but some bacteria can adapt and increase their resistance. 16S rRNA sequencing indicates that a variety of ruminal bacteria are found in the "low G + C Gram-positive group," but some of these bacteria are monensin resistant and were previously described as Gram-negative species (e.g., Selenomonas ruminantium and Megasphaera elsdenii). The activity of monensin can be assayed by its ability to cause potassium loss, and results indicated that the amount of monensin needed to catalyze half maximal potassium depletion (K(d)) from low G + C gram-positive ruminal bacteria varied by as much as 130-fold. The K(d) values for Butyrivibrio fibrisolvens 49, Streptococcus bovis JB1, Clostridium aminophilum F, S. ruminantium HD4, and M. elsdenii B159 were 10, 65, 100, 1020, and 1330 nM monensin, respectively. B. fibrisolvens was very sensitive to monensin, and it did not adapt. S. bovis and C. aminophilum cultures that were transferred repeatedly with sub-lethal doses of monensin had higher K(d) values than unadapted cultures, but the K(d) was always less than 800 nM. S. ruminantium and M. elsdenii cells were highly resistant (K(d) > 1000 nM), and this resistance could be explained by the ability of these low G + C Gram-positive bacteria to synthesize outer membranes.

MeSH terms

  • Anaerobiosis
  • Animals
  • Base Composition
  • Culture Media
  • Cytosine / analysis
  • DNA, Bacterial / chemistry*
  • Drug Resistance, Microbial
  • Gram-Positive Bacteria / drug effects
  • Gram-Positive Bacteria / genetics
  • Gram-Positive Bacteria / physiology*
  • Guanine / analysis
  • Monensin / pharmacology*
  • Potassium / metabolism*
  • Rumen / microbiology*


  • Culture Media
  • DNA, Bacterial
  • Guanine
  • Cytosine
  • Monensin
  • Potassium