Purpose: The purpose of this investigation was to evaluate the accuracy of a new air displacement plethysmograph, BOD POD Body Composition System, for determining %fat in collegiate football players.
Methods: Body fatness was estimated from body density (Db), which was measured on the same day using the BOD POD and hydrostatic weighing (HW) in 69 Division IA football players. In addition, 20 subjects were whole body scanned using dual-energy x-ray absorptiometry, DXA (Lunar DPX-L) to assess total body mineral content and %fat. Mineral content and HW determined Db were used to compute %fat from a three-component model (3C; fat, mineral, and residual).
Results: Test-retest reliability for assessing %fat using the BOD POD (N = 15) was 0.994 with a technical error of measurement of 0.448%. Mean (+/- SEM) Db measured with the BOD POD (1.064 +/- 0.002 g x cc(-1) was significantly greater (P < 0.05) than HW (1.060 +/- 0.002 g x cc(-1)), thus resulting in a lower %fat for the BOD POD (15.1 +/- 0.8%) compared with HW (17.0 +/- 0.8%). Similar results (N = 20) were found for DXA (12.9 +/- 1.2%) and the 3C (12.7 +/- 0.8%) where %fat scores were significantly higher (P < 0.05) than scores determined using the BOD POD (10.9 +/- 1.0%).
Conclusions: Db measured with the BOD POD was higher than the criterion HW, thus yielding lower %fat scores for the BOD POD. In addition, BOD POD determined %fat was lower than DXA and 3C determined values in a subgroup of subjects. Assessment of %fat using the BOD POD is reliable and requires minimal technical expertise; however, in this study of collegiate football players, %fat values were underpredicted when compared to HW, DXA, and the 3C model.