Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Oct;41(1):135-47.

Molecular analysis of developmental plasticity in neocortex

Affiliations
Review

Molecular analysis of developmental plasticity in neocortex

E Nedivi. J Neurobiol. 1999 Oct.

Abstract

Gene expression studies indicate that during activity-dependent developmental plasticity, N-methyl-D-aspartate receptor activation causes a Ca(2+)-dependent increase in expression of transcription factors and their downstream targets. The products of these plasticity genes then operate collectively to bring about the structural and functional changes that underlie ocular dominance plasticity in visual cortex. Identifying and characterizing plasticity genes provides a tool for molecular dissection of the mechanisms involved. Members of second-messenger pathways identified in adult plasticity paradigms and elements of the transmission machinery are the first candidate plasticity genes tested for their role in activity-dependent developmental plasticity. Knockout mice with deletions of such genes have allowed analyzing their function in the context of different systems and in different paradigms. Studies of mutant mice reveal that activity-dependent plasticity is not necessarily a unified phenomenon. The relative importance of a gene can vary with the context of its expression during different forms of plasticity. Forward genetic screens provide additional new candidates for testing, some with well-defined cellular functions that provide insight into possible plasticity mechanisms.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abeliovich A, Chen C, Goda Y, Silva AJ, Stevens CF, Tonegawa S. Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell. 1993a;75:1253–1262. - PubMed
    1. Abeliovich A, Paylor R, Chen C, Kim JJ, Wehner JM, Tonegawa S. PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell. 1993b;75:1263–1271. - PubMed
    1. Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell. 1994;79:365–375. - PubMed
    1. Antonini A, Stryker MP. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J Neurosci. 1993a;13:3549–3573. - PMC - PubMed
    1. Antonini A, Stryker MP. Rapid remodeling of axonal arbors in the visual cortex. Science. 1993b;260:1819–1821. - PubMed

Publication types

MeSH terms

LinkOut - more resources