A comparative survey of automated parameter-search methods for compartmental neural models
- PMID: 10515252
- DOI: 10.1023/a:1008972005316
A comparative survey of automated parameter-search methods for compartmental neural models
Abstract
One of the most difficult and time-consuming aspects of building compartmental models of single neurons is assigning values to free parameters to make models match experimental data. Automated parameter-search methods potentially represent a more rapid and less labor-intensive alternative to choosing parameters manually. Here we compare the performance of four different parameter-search methods on several single-neuron models. The methods compared are conjugate-gradient descent, genetic algorithms, simulated annealing, and stochastic search. Each method has been tested on five different neuronal models ranging from simple models with between 3 and 15 parameters to a realistic pyramidal cell model with 23 parameters. The results demonstrate that genetic algorithms and simulated annealing are generally the most effective methods. Simulated annealing was overwhelmingly the most effective method for simple models with small numbers of parameters, but the genetic algorithm method was equally effective for more complex models with larger numbers of parameters. The discussion considers possible explanations for these results and makes several specific recommendations for the use of parameter searches on neuronal models.
Similar articles
-
Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.J Neurophysiol. 1993 Jun;69(6):1948-65. doi: 10.1152/jn.1993.69.6.1948. J Neurophysiol. 1993. PMID: 7688798
-
Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data.J Neurosci Methods. 2012 Sep 15;210(1):22-34. doi: 10.1016/j.jneumeth.2012.04.006. Epub 2012 Apr 13. J Neurosci Methods. 2012. PMID: 22524993
-
Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites.J Neurophysiol. 2001 Dec;86(6):2998-3010. doi: 10.1152/jn.2001.86.6.2998. J Neurophysiol. 2001. PMID: 11731556
-
Control of Na+ spike backpropagation by intracellular signaling in the pyramidal neuron dendrites.Mol Neurobiol. 2000 Aug-Dec;22(1-3):129-41. doi: 10.1385/MN:22:1-3:129. Mol Neurobiol. 2000. PMID: 11414276 Review.
-
Active properties of neuronal dendrites.Annu Rev Neurosci. 1996;19:165-86. doi: 10.1146/annurev.ne.19.030196.001121. Annu Rev Neurosci. 1996. PMID: 8833440 Review.
Cited by
-
Using extracellular action potential recordings to constrain compartmental models.J Comput Neurosci. 2007 Aug;23(1):39-58. doi: 10.1007/s10827-006-0018-2. Epub 2007 Feb 2. J Comput Neurosci. 2007. PMID: 17273940
-
A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research.Front Physiol. 2018 Jul 20;9:958. doi: 10.3389/fphys.2018.00958. eCollection 2018. Front Physiol. 2018. PMID: 30079031 Free PMC article. Review.
-
Systematic generation of biophysically detailed models for diverse cortical neuron types.Nat Commun. 2018 Feb 19;9(1):710. doi: 10.1038/s41467-017-02718-3. Nat Commun. 2018. PMID: 29459718 Free PMC article.
-
BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience.Front Neuroinform. 2016 Jun 7;10:17. doi: 10.3389/fninf.2016.00017. eCollection 2016. Front Neuroinform. 2016. PMID: 27375471 Free PMC article.
-
Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study.J Physiol. 2006 May 15;573(Pt 1):83-106. doi: 10.1113/jphysiol.2006.106682. Epub 2006 Mar 9. J Physiol. 2006. PMID: 16527854 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources