A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability

Nucleic Acids Res. 1999 Nov 15;27(22):4328-34. doi: 10.1093/nar/27.22.4328.


Up to now, out of approximately 20 antisense oligodeoxyribonucleotides (as ODN) selected and tested against a given target gene, only one species shows substantial suppression of target gene expression. In part, this seems to be related to the general assumption that the structures of local target sequences or antisense nucleic acids are unfavorable for efficient annealing. Experimental approaches to find effective as ODN are extremely expensive when including a large number of antisense species and when considering their moderate success. Here, we make use of a systematic alignment of computer-predicted secondary structures of local sequence stretches of the target RNA and of semi-empirical rules to identify favorable local target sequences and, hence, to design more effective as ODN. The intercellular adhesion molecule 1 (ICAM-1) gene was chosen as a target because it had been shown earlier to be sensitive to antisense-mediated gene suppression. By applying the protocol described here, 10 ICAM-1-directed as ODN species were found that showed substantially improved inhibition of target gene expression in the endothelial cell line ECV304 when compared with the most effective published as ODN. Further, 17 out of 34 antisense species (50%) selected on the theoretical basis described here showed significant (>50%) inhibition of ICAM-1 expression in mammalian cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Transformed
  • Data Interpretation, Statistical
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / metabolism
  • Gene Expression / drug effects*
  • Gene Targeting*
  • Humans
  • Intercellular Adhesion Molecule-1 / drug effects
  • Intercellular Adhesion Molecule-1 / genetics*
  • Intercellular Adhesion Molecule-1 / metabolism
  • Models, Chemical
  • Oligodeoxyribonucleotides, Antisense / chemistry
  • Oligodeoxyribonucleotides, Antisense / pharmacology*
  • Probability
  • Structure-Activity Relationship


  • Oligodeoxyribonucleotides, Antisense
  • Intercellular Adhesion Molecule-1