Objective: To investigate in vitro which CYP isoforms (CYP1A2, CYP2D6 and CYP3A4) are involved in the biotransformation of haloperidol (HAL) and reduced haloperidol (RHAL).
Methods: The biotransformation of HAL and RHAL is evaluated by measuring HAL and RHAL remaining after incubation with human liver microsomes and with supersomes from human baculovirus-infected cells expressing human P(450) isoforms. The influence of chemical- and immuno-inhibition of specific isoforms on the disappearance of HAL and RHAL was also studied.
Results: After 60-min incubation of 2 microM and 20 microM HAL or RHAL with human liver microsomes, for HAL, 58% and 64%, respectively, remained in the incubation mixture, for RHAL, 53% and 66%, respectively. Ketoconazole had the most pronounced inhibitory effect on the biotransformation of both substrates, while for quinidine and furafylline there was only a weak or no influence. Anti-CYP3A4 antibodies inhibited strongly the biotransformation of HAL and RHAL, while the influence of anti-CYP2D6 antibodies was much less pronounced. After incubation with supersomes of recombinant CYP3A4, HAL and RHAL disappeared rapidly; disappearance was slow after incubation with CYP2D6 supersomes, and negligible with CYP1A2 supersomes.
Conclusion: The results show that CYP3A4 is the most important CYP isoenzyme involved in the biotransformation of HAL and RHAL, and that the metabolism by CYP2D6 is only a minor pathway; CYP1A2 has no or only a negligible influence.