Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov 5;274(45):31875-81.
doi: 10.1074/jbc.274.45.31875.

Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for rho GTPases

Affiliations
Free article

Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for rho GTPases

G Schmidt et al. J Biol Chem. .
Free article

Abstract

Bordetella dermonecrotic toxin (DNT) causes the deamidation of glutamine 63 of Rho. Here we identified the region of DNT harboring the enzyme activity and compared the toxin with the cytotoxic necrotizing factor 1, which also deamidates Rho. The DNT fragment (DeltaDNT) covering amino acid residues 1136-1451 caused deamidation of RhoA at glutamine 63 as determined by mass spectrometric analysis and by the release of ammonia. In the presence of dansylcadaverine or ethylenediamine, DeltaDNT caused transglutamination of Rho. Deamidase and transglutaminase activities were blocked in the mutant proteins Cys(1292) --> Ala, His(1307) --> Ala, and Lys(1310) --> Ala of DeltaDNT. Deamidation and transglutamination induced by DeltaDNT blocked intrinsic and Rho- GTPase-activating protein-stimulated GTPase activity of RhoA. DeltaDNT deamidated and transglutaminated Rac and Cdc42 in the absence and presence of ethylenediamine, respectively. Modification of Rho proteins by DeltaDNT was nucleotide-dependent and did not occur with GTPgammaS-loaded GTPases. In contrast to cytotoxic necrotizing factor, which caused the same kinetics of ammonia release in the absence and presence of ethylenediamine, ammonia release by DeltaDNT was largely increased in the presence of ethylenediamine, indicating that DeltaDNT acts primarily as a transglutaminase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources