Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov 2;38(44):14534-41.
doi: 10.1021/bi9911233.

An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)-ATPase

Affiliations

An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)-ATPase

Y Wei et al. Biochemistry. .

Abstract

Pmr1, a novel member of the family of P-type ATPases, localizes to the Golgi compartment in yeast where it provides Ca(2+) and Mn(2+) for a variety of normal secretory processes. We have previously characterized Ca(2+) transport in isolated Golgi vesicles, and described an expression system for the analysis of Pmr1 mutants in a yeast strain devoid of background Ca(2+) pump activity [Sorin, A., Rosas, G., and Rao, R. (1997) J. Biol. Chem. 272, 9895-9901]. Here we show, using recombinant bacterial fusions, that an N-terminal EF hand-like motif in Pmr1 binds Ca(2+). Increasing disruptions of this motif led to progressive loss of pump function; thus, the single point mutations D51A and D53A retained pump activity but with drastic reductions in the affinity for Ca(2+) transport, while the double mutant was largely unable to exit the endoplasmic reticulum. In-frame deletions of the Ca(2+)-binding motif resulted in complete loss of function. Interestingly, the single point mutations conferred differential affinities for transport of Ca(2+) and Mn(2+) ions. Further, the proteolytic stability of the catalytic ATP-binding domain is altered by the N-terminal mutations, suggesting an interaction between these two regions of polypeptide. These studies implicate the N-terminal domain of Pmr1 in the modulation of ion transport, and may help elucidate the role of N-terminal metal-binding sites of Cu(2+)-ATPases, defective in Wilson and Menkes disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources