Genetic studies of autistic disorder and chromosome 7

Genomics. 1999 Nov 1;61(3):227-36. doi: 10.1006/geno.1999.5968.


Genome-wide scans have suggested that a locus on 7q is involved in the etiology of autistic disorder (AD). We have identified an AD family in which three sibs inherited from their mother a paracentric inversion in the chromosome 7 candidate region (inv(7)(q22-q31.2)). Clinically, the two male sibs have AD, while the female sib has expressive language disorder. The mother carries the inversion, but does not express AD. Haplotype data on the family suggest that the chromosomal origin of the inversion was from the children's maternal grandfather. Based on these data, we have genotyped 76 multiplex (>/=2 AD affecteds/family) families for markers in this region of 7q. Two-point linkage analysis yielded a maximum heterogeneity lod score of 1.47 and maximum lod score (MLS) of 1.03 at D7S495. Multipoint MLS and NPL analyses resulted in peak scores of 1.77 at D7S2527 and 2.01 at D7S640. Examination of affected sibpairs revealed significant paternal (P = 0.007), but not maternal (P = 0. 75), identity-by-descent sharing at D7S640. Significant linkage disequilibrium was detected with paternal (P = 0.02), but not maternal (P = 0.15), transmissions at D7S1824 in multiplex and singleton families. There was also evidence for an increase in recombination in the region (D7S1817 to D7S1824) in the AD families versus non-AD families (P = 0.03, sex-averaged; and P = 0.01, sex-specific). These results provide further evidence for the presence of an AD locus on chromosome 7q, as well as provide evidence suggesting that this locus may be paternally expressed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Autistic Disorder / diagnosis
  • Autistic Disorder / genetics*
  • Child, Preschool
  • Chromosome Inversion
  • Chromosomes, Human, Pair 7 / genetics*
  • Cytogenetic Analysis
  • Female
  • Genotype
  • Humans
  • Linkage Disequilibrium
  • Lod Score
  • Male
  • Pedigree