Response to motion in extrastriate area MSTl: disparity sensitivity

J Neurophysiol. 1999 Nov;82(5):2462-75. doi: 10.1152/jn.1999.82.5.2462.


Many neurons in the lateral-ventral region of the medial superior temporal area (MSTl) have a clear center surround separation in their receptive fields. Either moving or stationary stimuli in the surround modulates the response to moving stimuli in the center, and this modulation could facilitate the perceptual segmentation of a moving object from its background. Another mechanism that could facilitate such segmentation would be sensitivity to binocular disparity in the center and surround regions of the receptive fields of these neurons. We therefore investigated the sensitivity of these MSTl neurons to disparity ranging from three degrees crossed disparity (near) to three degrees uncrossed disparity (far) applied to both the center and the surround regions. Many neurons showed clear disparity sensitivity to stimulus motion in the center of the receptive field. About (1)/(3) of 104 neurons had a clear peak in their response, whereas another (1)/(3) had broader tuning. Monocular stimulation abolished the tuning. The prevalence of cells broadly tuned to near and far disparity and the reversal of preferred directions at different disparities observed in MSTd were not found in MSTl. A stationary surround at zero disparity simply modulated up or down the response to moving stimuli at different disparities in the receptive field (RF) center but did not alter the disparity tuning curve. When the RF center motion was held at zero disparity and the disparity of the stationary surround was varied, some surround disparities produced greater modulation of MSTl neuron response than did others. Some neurons with different disparity preferences in center and surround responded best to the relative disparity differences between center and surround, whereas others were related to the absolute difference between center and surround. The combination of modulatory surrounds and the sensitivity to relative difference between center and surround disparity make these MSTl neurons particularly well suited for the segmentation of a moving object from the background.

MeSH terms

  • Analysis of Variance
  • Animals
  • Brain Mapping
  • Color Perception
  • Macaca mulatta
  • Male
  • Motion Perception / physiology*
  • Neurons / physiology*
  • Photic Stimulation
  • Regression Analysis
  • Vision Disparity / physiology*
  • Visual Cortex / physiology*
  • Visual Fields