Transcription factor UAF, expansion and contraction of ribosomal DNA (rDNA) repeats, and RNA polymerase switch in transcription of yeast rDNA
- PMID: 10567580
- PMCID: PMC84978
- DOI: 10.1128/MCB.19.12.8559
Transcription factor UAF, expansion and contraction of ribosomal DNA (rDNA) repeats, and RNA polymerase switch in transcription of yeast rDNA
Abstract
Strains of the yeast Saccharomyces cerevisiae defective in transcription factor UAF give rise to variants able to grow by transcribing endogenous ribosomal DNA (rDNA) by RNA polymerase II (Pol II). We have demonstrated that the switch to growth using the Pol II system consists of two steps: a mutational alteration in UAF and an expansion of chromosomal rDNA repeats. The first step, a single mutation in UAF, is sufficient to allow Pol II transcription of rDNA. In contrast to UAF mutations, mutations in Pol I or other Pol I transcription factors can not independently lead to Pol II transcription of rDNA, suggesting a specific role of UAF in preventing polymerase switch. The second step, expansion of chromosomal rDNA repeats to levels severalfold higher than the wild type, is required for efficient cell growth. Mutations in genes that affect recombination within the rDNA repeats, fob1 and sir2, decrease and increase, respectively, the frequency of switching to growth using Pol II, indicating that increased rDNA copy number is a cause rather than a consequence of the switch. Finally, we show that the switch to the Pol II system is accompanied by a striking alteration in the localization and morphology of the nucleolus. The altered state that uses Pol II for rDNA transcription is semistable and heritable through mitosis and meiosis. We discuss the significance of these observations in relation to the plasticity of rDNA tandem repeats and nucleolar structures as well as evolution of the Pol I machinery.
Figures
Similar articles
-
RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II.Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4390-5. doi: 10.1073/pnas.96.8.4390. Proc Natl Acad Sci U S A. 1999. PMID: 10200272 Free PMC article.
-
Role of TATA binding protein (TBP) in yeast ribosomal dna transcription by RNA polymerase I: defects in the dual functions of transcription factor UAF cannot be suppressed by TBP.Mol Cell Biol. 2001 Apr;21(7):2292-7. doi: 10.1128/MCB.21.7.2292-2297.2001. Mol Cell Biol. 2001. PMID: 11259579 Free PMC article.
-
Interaction of TATA-binding protein with upstream activation factor is required for activated transcription of ribosomal DNA by RNA polymerase I in Saccharomyces cerevisiae in vivo.Mol Cell Biol. 1998 Jul;18(7):3752-61. doi: 10.1128/MCB.18.7.3752. Mol Cell Biol. 1998. PMID: 9632758 Free PMC article.
-
How do cells count multi-copy genes?: "Musical Chair" model for preserving the number of rDNA copies.Curr Genet. 2019 Aug;65(4):883-885. doi: 10.1007/s00294-019-00956-0. Epub 2019 Mar 23. Curr Genet. 2019. PMID: 30904990 Review.
-
The nucleolus: nucleolar space for RENT.Curr Biol. 1999 Jul 29-Aug 12;9(15):R575-6. doi: 10.1016/s0960-9822(99)80359-5. Curr Biol. 1999. PMID: 10469557 Review.
Cited by
-
Ribosomal proteins L7 and L8 function in concert with six A₃ assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits.RNA. 2012 Oct;18(10):1805-22. doi: 10.1261/rna.032540.112. Epub 2012 Aug 14. RNA. 2012. PMID: 22893726 Free PMC article.
-
Transcription of chromosomal rRNA genes by both RNA polymerase I and II in yeast uaf30 mutants lacking the 30 kDa subunit of transcription factor UAF.EMBO J. 2001 Aug 15;20(16):4512-21. doi: 10.1093/emboj/20.16.4512. EMBO J. 2001. PMID: 11500378 Free PMC article.
-
RNAP II produces capped 18S and 25S ribosomal RNAs resistant to 5'-monophosphate dependent processive 5' to 3' exonuclease in polymerase switched Saccharomyces cerevisiae.BMC Mol Cell Biol. 2022 Apr 10;23(1):17. doi: 10.1186/s12860-022-00417-6. BMC Mol Cell Biol. 2022. PMID: 35399070 Free PMC article.
-
Survey and summary: transcription by RNA polymerases I and III.Nucleic Acids Res. 2000 Mar 15;28(6):1283-98. doi: 10.1093/nar/28.6.1283. Nucleic Acids Res. 2000. PMID: 10684922 Free PMC article. Review.
-
Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome.Genes (Basel). 2019 May 7;10(5):345. doi: 10.3390/genes10050345. Genes (Basel). 2019. PMID: 31067804 Free PMC article. Review.
References
-
- Bryk M, Banerjee M, Murphy M, Knudsen K E, Garfinkel D J, Curcio M J. Transcriptional silencing of Ty1 elements in the RDNI locus of yeast. Genes Dev. 1997;11:255–269. - PubMed
-
- Chindamporn A, Iwaguchi S-I, Nakagawa Y, Homma M, Tanaka K. Clonal size-variation of rDNA cluster region on chromosome XII of Saccharomyces cerevisiae. J Gen Microbiol. 1993;139:1409–1415. - PubMed
-
- Cook P R. RNA polymerase: structural determinant of the chromatin loop and the chromosome. Bioessays. 1994;16:425–430. - PubMed
-
- Conconi A, Widmer R M, Koller T, Sogo J M. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell. 1989;57:753–761. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases